Description of Instantaneous Restriction Space for Multi Degrees-of-Freedom Bilateral Teleoperation Systems Using Position Sensors in Unstructured Environments

نویسندگان

  • Keehoon Kim
  • Wan Kyun Chung
  • M. Cenk Çavuşoğlu
چکیده

This paper investigates a novel position sensor based force reflection framework for multi degrees-of-freedom bilateral teleoperation systems in unstructured environments. The conventional position sensor based force reflection method, known as position error feedback, may generate grossly inaccurate force reflection directions during collisions involving the slave manipulator links. The proposed restriction space projection framework calculates the instantaneous restriction space to provide the accurate force reflection regardless of kinematic dissimilarity conditions of bilateral teleoperation systems. Three examples address how to apply the proposed framework to diverse bilateral teleoperation systems. Simulation results confirmed the validity of the proposed framework in a kinematically dissimilar bilateral teleoperation system under various constraint conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-fuzzy control of bilateral teleoperation system using FPGA

This paper presents an adaptive neuro-fuzzy controller ANFIS (Adaptive Neuro-Fuzzy Inference System) for a bilateral teleoperation system based on FPGA (Field Programmable Gate Array). The proposed controller combines the learning capabilities of neural networks with the inference capabilities of fuzzy logic, to adapt with dynamic variations in master and slave robots and to guarantee good prac...

متن کامل

Position/force Control of Systems Subjected to Communicaton Delays and Interruptions in Bilateral Teleoperation

Teleoperation technology allows to remotely operate robotic (slave) systems located in hazardous, risky and distant environments. The human operator sends commands through the controller (master) system to execute the tasks from a distance. The operator is provided with necessary (visual, audio or haptic) feedback to accomplish the mission remotely. In bilateral teleoperation, continuous feedba...

متن کامل

Bilateral Teleoperation Systems Using Backtracking Search optimization Algorithm Based Iterative Learning Control

This paper deals with the application of Iterative Learning Control (ILC) to further improve the performance of teleoperation systems based on Smith predictor. The goal is to achieve robust stability and optimal transparency for these systems. The proposed control structure make the slave manipulator follow the master in spite of uncertainties in time delay in communication channel and model pa...

متن کامل

Sliding-Mode Bilateral Teleoperation Control Design for Master-Slave Pneumatic Servo Systems

This paper presents a novel bilateral control design scheme for pneumatic master-slave teleoperation systems that are actuated by low-cost solenoid valves. The motivation for using pneumatic actuators in lieu of electrical actuators is that the former has higher force to mass ratio than the latter and is inert to magnetic fields, which is crucial in certain teleoperation applications such as MR...

متن کامل

Delay-dependent stability for transparent bilateral teleoperation system: an LMI approach

There are two significant goals in teleoperation systems: Stability and performance. This paper introduces an LMI-based robust control method for bilateral transparent teleoperation systems in presence of model mismatch. The uncertainties in time delay in communication channel, task environment and model parameters of master-slave systems is called model mismatch. The time delay in communicatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009